
MC FILE Copy Document No. 0580-001
17 March 1989

Foundation Tools Guidance & Education
cO for the

00 t.eo~ or Adaptable R6a/

PROCESS

REUSE AUTOMATION

_ - RATIONAL

Ada

Contract No. F1 9628-88-D-0032

CDRL Sequence No. 0580 D T I C
EECTE

NOVO 9 011
17 March 1989 U

BJ

I 4m &uJION 8rATEW2IT n

-Approved hnr, pub*j smg

REPORT DOCUMENTATION PAGE OP 1010ll

1. AGENCY USE ONLY (eave biarI, 2. REPORT DATE I3 REPOf T TYt~i ANJ, DAT ' COVI R'L,

M arch 17, 1989 Final
4. TITLE AND SUBTITLE H; UN~1iCN, AB

1Foundation Tools Guidance and Education C: F19628-88-D-0032

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND AD[)RFSS(L, ., r. 0 %j A N1-7A T 1ON

IBM Federal Sector Division KSPO',T NtV~dEf

800 N. Frederick Avenue
Gaithersburg, MID 20879

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. 5SPOSORING M0NiTO1qiNG

Electronic Systems DivisionAGCRERTNMR
Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000 CDRL Sequence No. 0-580

11. SUPPLEMENTARY NOTES

12a. OISTRIBUTIONI AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

113. ABSTRACT (Maximum 200 words)

IA description of the software tools created during the STARS Foundation work.
There are 38 tools, grouped into the following categories:

0 Operating systems,

0 Data base management systems,
0 User interfaces,

0 Command languages,
0 Graphics,

0 Networks and communications,
0 Runtime support,
0 Planning and optimization,
0 Design, integration and test,
0 Reusability assistance, and
0 Other tools.

14. SUBJECT TERMS 1 5. NUNM13LR OF PAGES

STARS, STARS Foundation, software tools, operating systems, data 32
base management systems, user interfaces, graphics, text processi ijaPRICE CO~t
computer networks, software reuse .. h~AJ'A BTAr

17. ~~~~~SECURITYCASFCTO 8SCRTY CLASSIFICATION 19. SECURITY CLASS1HAIC N3 IiATION OF ABTRC
17. SEIPCASIIAIN 1 OF THIS PAGE OF ABSTRACTI

Unga~~!~'ie I Unclassified j Unclassified IUL
'jN% 7 -'Cj 0 ./28fj S)

1)(' ~)'~

Foundation Tools Guidance & Education
for the

Software Technology for Adaptable, Reliable Systems
(STARS) Program

Contract No. F19628-88-D-0032

CDRL Sequence No. 0580

17 March 1989 -- co essior For

NTIS GRA&I
DTIC TAB El

alaibity Oodes
Prepared for: - c aud/o r

Dist
Electronic Systems Division

Air Force Systems Command, USAF y _

Hanscom AFB, MA 01731 -5000 __

Prepared by:

IBM Systems Integration Division
18100 Frederick Pike

Gaithersburg, MD 20879

Q13: Ada Foundations

Contract Data Requirement CDRL 0580, Type A005(B)
Data Item Description DI-H-30255
Contract No. F19628-88-D-0032

Technical Report: Foundation Tools Guidance and Education

17 March 1989

Prepared for:

Electronic Systems Division (PKG- t)
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

Science Applications International Corporation
Innovative Technology Group

Science Technology & Software Operation
Ada Software Division

311 Park Place Boulevard, Suite 360
Clearwater, FL 34619

CDRL 0580
17 March 1989

TABLE OF CONTENTS

1. INTRODUCTION 1

2. OPERATING SYSTEMS 2

3. DATABASE MANAGEMENT SYSTEMS 4

4. USER INTERFACES 6

5. COMMAND LANGUAGES 7

6. GRAPHICS 8

7. TEXT PROCESSING 9

8. NETWORKS AND COMMUNICATIONS 11

9. RUNTIME SUPPORT 12

10. PLANNING AND OPTIMIZATION 14

11. DESIGN, INTEGRATION, AND TEST 16

12. REUSABILITY ASSISTANCE 18

13. OTHER TOOLS 20

14. OVERVIEW OF FOUNDATION TOOLS 22

15. APPENDICES 24

15.1 FOUNDATION TOOLS DIRECTORY STRUCTURI 24

CDRL 0580
17 March 1989

) -. 1. INTRODUCTION

1.1 Purpos

This contract delivery requirement is intended to provide initial insight into the STARS
(Software Technology for Adaptable and Reliable Systems) foundation work. The report
addresses paragraph 3.3.2.5 of the Statement of Work (SOW) for the foundation tools task
(Q13). Paragraph 3.3.2.5 is concerned with guidance and education of the STARS foundation
effort. It focuses on creating an outline of the foundation tool components and their capabilities.
In addition, suggestions and recommendations for possible reuse are discussed.

1.2 Scope -

// The STARS foundation tools are located on the STARS repository computer under the
/ directory ADA$:[REPOSITORY.STARSFOUNDATION]. Each tool is given a unique

directory under [.STARSFOUNDATION] and is organized in the format provided by the
contractor.

The foundation work is divided into 12 categories, and each is detailed in a separate

section. These categories include:

o Operating Systems)

oA)Database Management Systems)

o')User Interfaces

oW)Command Languages'

o4Graphics)

o oText Processing.

o.,)Networks and Communications

o)Runtime Support

o'rPlanning and Optimization-I

o ,.Design, Integration and Test

o pinReusability Assistance, 1. r. 2
0 'Other Tools

Within each section, the functionality and the components of each tool are described. The
purpose and intent of the foundation tool are discussed and, when possible, any machine
dependencies are noted. System-level documentation is the main source of information for each
tool. Where this documentation is not available, a scan of the source code and/or a review of the
contractor's SOW is referenced. The environment intended for each tool and the Ada compilers
used in their development are also provided. Tools containing possible candidates for reuse are
singled out and, when possible, those components are listed. Finally, an overview of the source
code, with emphasis on internal documentation, is performed. A summary and an overall review
of the foundation tools are given in the last section titled, "Ove'view of Foundation Tools."

K

CDRL 0580
17 March 1989

2. OPERATING SYSTEMS

This section contains all of the STARS foundation work dealing with operating systems
work. The systems include a method of porting file names between different environments, a set
of packages for tailoring a runtime environment, and a set of packages for managing streams of
data.

2.1 Universal File Names

The Universal File Names (UFN) system is written by Integrated Software, Inc. It consists
of a set of packages designed to manage file names between several operating systems. The three
operating systems which are supported are VAX/VMS, DOS, and UNIX. The system provides
an abstract file name which maps to each of the three operating systems and increases the
portability of the application software.

The source code is written in Ada, and a driver for a demo is provided with the code. For
the most part, the source is lightly documented. It maps all VAX file names to UFN in a 1:1
ratio. The DOS and UNIX names are mapped to a four-digit hash value and the first four
characters of the given name. The names are then stored in a Direct_10 file. A utility that
converts the Direct_10 file to Text_10 is provided for increased portability.

System-level documentation for the UFN system may be found in the "ufn_2_0.man" file
in the repository under the [.INTEGSOFT] directory. All of the source code is in the
"ufn_2_0.ada" file.

2.2 Tailorable Ada Runtime Environment

The Tailorable Ada Runtime Environment (TARTE) is a collection of packages written by
Integrated Software, Inc. It is designed to provide user-tailorable, realtime executive services
independent of the standard Ada runtime environmeii. The standard configuration supports a
variety of scheduling schemes. These include coroutines, nonpreemptive priority-based
scheduling, and preemptive priority-based scheduling. Priorities are dynamic. A resource
abstraction, with binary semaphore operations, is provided. Among other options, the TARTE
supports Rate-Monotonic scheduling.

The main function of the TARTE is to provide the kind of user control over scheduling and
resource allocation that is needed for realtime applications but is not provided by standard Ada.
Specific Ada implementations may also provide such capabilities, but an application that relies
on implementation-specific scheduling features is not likely to be portable. The TARTE provides
necessary scheduling features in an implementation-independent form, thereby aiding portability
and software reuse. The TARTE isolates machine and compiler dependencies in a single package
body, named "Machine", that may be rewritten by the user when porting is required.

The TARTE is also intended to be adequate as a foundation for implementation of the full
standard Ada tasking model, with extensions for realtime applications and possibly also for
implementation of a full realtime operating system.

System-level documentation for the TARTE system may be found in the "tarte 2 O.man"
file in the repository undcr the I.INTEGSOFT] directory. All of the source code is in the
"tarte_2_0.ada" file.

2.3 General Embedded Systems Specification

2

CDRL 0580
17 March 1989

The General Embedded Systems Specification (GENESYS) system is written by Aerojet
Electro Systems/Intermetrics. At the time of this delivery no source code or documentation has
been provided.

2.4 Stream Data Types For Ada

The stream management system was written by Computer Technology Associates, Inc. The
software contains a reusable set of generic packages for the creation and manipulation of stream
objects. Conceptually, streams may be viewed as a generalization of sequential data structures
such as arrays, linked lists, and sequential files. Any sequence or flow of a data type and
manipulations on that flow can be represented by a stream.

The streams system consists of two packages for creating and manipulating streams. These
two packages, Safe_Streams and Free_Streams, are identical as far as the application interface is
concerned. They differ in that the procedures in the SafeStreams package are reentrant while the
procedures in the FreeStreams package are not.

The streams software contains a linked list package and a random number generator. These
packages may have some reuse potential. There are several test routines and some demonstration
routines provided with the code. On the whole the code is well documented. It incorporates good
type checking and error handling.

System-level documentation for the Ada streams system may be found in the repository
under the [.CTA3_04321 directory in the files "final.doc" and "stream.doc".

3

CDRL 0580
17 March 1989

3. DATABASE MANAGEMENT SYSTEMS

This section contains the database managing software. This includes packages to manage
databases and also to interface with existing systems. There is a report generating system ARPS;
an Ada/SQL binding to PC ORACLE: and a CICS interface in Ada for IBM systems.

3.1 Ada Report Production System

The Ada Report Production System (ARPS) was written by SAIC Comsystems and is an
Ada-driven report writer for data stored in a relational database. The Ada/SQL interface that is
provided is specific to PC ORACLE. To execute the ARPS for another environment, an
Ada/SQL interface for that environment must be created.

ARrS provides the ability to specify and automatically generate reports from a relational
database. Reports are created, maintained, and edited using an interactive report specification
tool which provides for selection and specification of standard report formatting features and for
database extraction using the Ada/SQL DBMS interface. The report specification developed
using this interactive tool is an Ada specification which defines, in Ada syntax, the format and
content of the desired report. The Ada report specification is processed by the ARPS code
generator to produce Ada source code (packages) implementing the report formats and providing
procedure calls and interfaces to the Ada/SQL DML for eventual report production.

The ARPS software contains packages that provide windowing utilities, menu utilities,
calendar utilities, a parsing utility, and a queue package. These should be considered possible
candidates for reuse. The specifications are well documented.

System-level documentation for the ARPS is provided by the files "readme.txt" and
"userman.txt" located in the [.SAICCOMSYS] directory on the repository.

3.2 DBMS in/for Supported Information Systems Management

This set of code is a prototype DBMS written in Ada for Ada. The system, written by the
Stanford Research Institute, consists of a demo which attempts to show that a DBMS may be
written in Ada. The documentation throughout the code is light and Ada's typing and abstraction
mechanisms are not thoroughly implemented. The system contains a set of buffer utility
packages as well as some relational algebra packages. These packages are
implementation-dependent which limits their reuse potential.

There is a "readme.txt" and "port.dat" file located in the repository under the [.SRI)
directory. These files do not provide much insight into the structure and functionality of the
system. More information may be extracted by looking at the code and reading the SOW.

3.3 Prototype Binding of ANSI Standard SQL/Ada

The ANSI standard of SQL/Ada is written by Lockheed Missiles and Space. To date we
have not received any source code. According to the SOW, the system provides a standard
interface from an application program written in Ada to a commercially available DBMS that
uses ANSI standard SQL.

3.4 Ada/SQL Test Data Generator

The Ada/SQL Test Data Generator is written by Grumman Data Systems. This system

4

CDRL 0580
17 March 1989

generates test data for Ada/SQL interfaces according to user-supplied data attributes. The
internal documentation is light and makes little use of Ada's typing and abstraction mechanisms.
System-level documentation is not provided, and the source code may be found in the
[.GRUMMAN] directory.

3.5 Transparent Sequential Input/Output

The Transparent Sequential Input/Output (TSIO) is written by Computer Sciences
Corporation. It provides an alternative to Ada's predefined Sequential-tO package. TSIO's main
point of interest is that the files that are produced are portable where as SequentialJO's files are
not. The system has been compiled on several machines including a DEC VAX, a Rational and
an IBM PC/AT. Before TSIO will execute correctly, the user environment must be set up and an
Ada types library created. At a minimum, setting up the user environment requires defining the
logical name ADA$TYPESLIBRARY at the process, group, or system level. If the name is
defined at more than one level, the TSIO software uses the lowest level at which the logical
name is defined.

System-level documentation for the TSIO may be found in the "readme.lis" file in the
repository under the [.CSC] directory. The system consists of several driver programs that create
the type structures and perform the input and output.

3.6 Ada Interface to CICS and SQL

The CICS interface is written by Intermetrics. The system provides explicit access to CICS
services. These packages consist primarily of code which passes control to the standard CICS
assembly language command-level interface. For this reason, the Ada procedures will, in
general, do whatever the corresponding command-level instruction would do with similar
parameters.

In addition to a CICS interface, an SQL module compiler is provided. This tool provides a
way for application utilities, written in SQL module language, to be translated into Ada packages
that can be used when writing Ada applications for SQL. The Ada application programs can
perform database queries and database manipulation in SQL on Datacom/DB databases. The
SQL/Ada Module Compiler generates a compilable Ada package specification and body from
one SQL module. Ada applications can then "with" this package to gain access to databaseS, that
have an SQL/Ada interface.

The code contains approximately 41 assembly language files which limit the portability to
IBM machines. It was compiled using the Intermetrics MVS Ada compiler. Overall the code is
lightly documented and displays several coding formats.

System-level documentation for the CICS and the SQL interfaces is located in the files"man.doc", "sql.doc", and "hostdep.dat". They may be found in the repository under the
[.INTERCICSQL2] directory.

5

CDRL 0580
17 March 1989

4. USER INTERFACES

4.1 Virtual CAI Interfaces

The Virtual CAI Interfaces system is written by AETech. It defines a computer-aided
instruction system. Resources provided include keyboard and file routines, 1/0 routines for a
mouse, I/O routines for a video disk, graphics-mode display packages, and asynchronous
communication packages.

The code has been developed on an Alsys compiler for the IBM PC/AT. The package
specifications are well documented. System-level documentation is not provided, and the source
code may be found in the [.AETECH_CAI] and the [AETECHVIJ directories.

6

CDRL 0580
17 March 1989

5. COMMAND LANGUAGES

5.1 Ada Command Environment

The Ada Command Environment (ACE) is written by Unisys. The ACE is an interactive,
object oriented command language environment for Ada development. It is modeled after
existing interactive programming environments, such as Smalltalk and Interlisp. ACE supports
many programming-in-the-large techniques that are key elements of the Ada language.

For the initial environment, ACE provides a basic set of Ada objects and operations. These
objects and operations are encapsulated as Abstract Data Types (ADTs) and implemented as a
set of Ada packages. Upon initialization of ACE, the basic set of ADTs is assimilated into a base
environm1ent for the user. This base environment includes packages that are necessary for the
interpretation of Ada statements (such as the Ada package "Standard") as well as packages that
provide operations typically performed by a user when interacting with the underlying operating
system.

System-level documentation is provided in the files "manual.txt" and "porting.txt" located
in the directory [UNISYSACE3.DOCS]. More documentation may be found in the "bugs.txt","pc.txt", "unix.txt", "verdix.txt", and "howtouse.txt" files located in the
(UNISYSACE3.READMES] directory. The source code is well documented and follows a
uniform programming format. The ACE prototype is operational in the Sun-3 and Unisys
PW2/500 (IBM PC/AT-compatible) environments.

7

CDR L 0580
17 March 1989

6. GRAPHICS

6.1 Ada Language Interface to the X-Wirdow System

The Ada interface to the X-Window system is written by Science Applications
International Corporation (SAIC). The system implements the X-Window system using Ada.
X-Windows is a network transparent windowing system developed at MIT for several operating
environments. The Ada implementation is intended to support larger applications that wish to
incorporate X-Windows into thcir system.

System-level documentation is not provided but there is a "readme." file in the I.SAIC3J
directory which comments on installation of the software. The software is intended to be
portable. There are seven files written in C that must be compiled into a library and bound to the
X-Window system. The system was developed using the Telesoft, Alsys, and Verdix Ada
compilers. Files necessary for porting the system to these environments have been provided.

6.2 Graphics Kernel System in Ada

The Graphics Kernel System (GKS) is a terminal graphics system implemented in Ada by
Software Technology, Inc. It is not known whether this particular implementation follows the
ANSI standard. GKS provides packages for trigonometric functions and a square root function
which may be reusable. The internal documentation is minimal and there is no indication as to
how to adapt the system to a particular machine. There are no user manuals and no system-level
documentation.

CDRL 0580
17 March 1989

7. TEXT PROCESSING

The text processing section contains all of the systems involved in processing or generating
text. Among the systems, there is a set of reusable components, an SGML parser and text
formatting system, and the STARS Editor.

7.1 Terminal Interface Package and Building Blocks Packages Upgrade

The Terminal Interface Package and Building Blocks Upgrade is written by the Ada
Software division of SAIC. It consists of reusable components that were first written for the
PC/AT environment and then ported to the VAX/VMS environment. Components include
balanced tree, linked list, stack, symbol table, calendar utilities, and utilities for both static and
dynamic strings. The packages are intended to aid in the development of larger software projects
by eliminating the need to rewrite elementary modules. Included in the delivery are packages for
terminal and keyboard input and output.

The SAIC building blocks have been developed using the Alsys and the VAX/VMS Ada
compilers. Most packages are stand-alone components, but some require the services of an
operating system and CRT interface which is provided. There are many test and demonstration
routines for the components, and the code is well documented. The documentation and source
code may be found in the repository under the [.SAICBB3] directory.

7.2 SAIC Text Editor Upgrade in Ada

The SAIC Text Editor Upgrade is written by the Ada Software Division of SAIC. This is
the STARS Foundation editor developed for NRL. It provides multi-window facilities and is
designed to run on the VAX/VMS or PC/AT environment. The editor provides a keyboard
template similar to WordStar and a menu-like command format for text editing.

The editor's features include a hierarchical on-line help system, split-screen editing,
multiple buffer editing, an annotation system, and syntax-directed eLting. The syntax-directed
feature includes the Ada language and selected Standard Generalized Markup Language (SGML)
document types. These are similar in function to the Language Sensitive Editor (LSE) written by
DEC.

The source code is well documented and follows a uniform programming format. Some
drawbacks include occasional loss of video presentation and the requirement of extended
memory to operate in the PC/AT environment. A user's manual may be found in the
[.SAIC_SGML] directory, and the source code may be found in the [.SAIC_TP2] directory.

7.3 Standard Generalized Markup Language (SGML) Implementation in Ada

The SGML parser is written by the the Ada Software Division of SAIC. It is a partial
implementation of ISO 8879 which describes a general markup language for documents. The
parser accepts as input a document which is marked using SGML tags. It produces a fully
expanded document with the tags and text separated and expanded. The tool includes a Text
Composition System (TCS) which takes the fully expanded file produced by the parser and
creates a PostScript file that is ready for printing.

The parser comes with a front-end Document Type Definition (DTD) converter which
parses a valid document BNF (according to ISO 8879). This BNF describes the format of the
document. An error encountered in the document will cause the parser to terminate by informing

9

CDRL 0580
17 March 1989

the user that an incorrect sequence of text and markup has been found. A DTD must be written
for each document type the user needs to process.

The TCS requires that the user code (in Ada) a document-specific driver. This driver
consists of package which contains a set of subroutines that formats the document according to
the user's specifications. An extensive set of routines is provided to aid the user in writing the
driver. Three examples are provided for the user to reference when writing the TCS driver.

System level documentation for the code may be found in the files "stcs.sgm", "tcs.sgm","stcs.ps", and "tcs.ps" within the directory [.SAICSGMLJ. The *.ps files are PostScript files.
The parser is written for the VAX/VMS environment and for the PC/AT environment. Some
drawbacks include slow execution speed and the need for extended memory to operate on the
PC. The SGML system is well documented and follows a uniform programming format.

10

CDRL 0580
17 March 1989

8. NETWORKS AND COMMUNICATIONS

8.1 Network Protocol

The Network Protocol system is written by Westinghouse Electric. The Network Protocol
is a set of Ada packages which implement two well-known transfer protocols. The two protocols
which are implemented are X-Modem and Kermit. The protocol system is implemented as a
group of generic packages. Both file transfer protocols are implemented as generics so that the
process for using either one is exactly the same.

Network Protocol implements the elements of both the X-Modem and Kermit file transfer
protocols which are considered to be standard. The functions provided are Send and Receive.
The fact that there are only two functions instead of four is a result of the use of generics to
implement both file transfer protocols. The invocation of either the Send or Receive function will
be performed in the same way regardless of which file transfer protocol has been instantiated.

The use of Network Protocol is dependent on the user adapting the application to fit the
target environment. Since Network Protocol is not a stand-alone program, certain procedures
must be written before it is executable. A definition for the type "byte" must be supplied, along
with procedures that provide the ability to read and write to the RS-232 port (or whatever is
being used to "transfer" the data). Procedures that access a file in the medium that the user
desires are also needed. Once these conditions have been met, it is important to remember that
the protocol selected must be available on the target machine.

System level documentation is located in the "aaaread.me" and the "usersmanual.txt" files
in the [.WESTINGNPI directory. There are two demonstration drivers provided to help in the
understanding of the system. The specifications contain some light documentation. The Network
Protocol system is implemented for both the VAX/VMS and the Rational R1000 environments.

!1

CDRL 9580
17 March 1989

9. RUNTIME SUPPORT

9.1 Transparent Distributed Ada Runtime Support

The Transparent Distributed Ada Runtime Support is written by the ESL Corporation. It is
a runtime support environment. The system consists of a code conversion of an old C
implementation. No documentation is provided, and it appears as though this is a UNIX-based
system. Some comments may be found in the "$readme." files located in the [.ESL.68K] and the
[.ESL.SUN] directories.

9.2 Secure File Transfer Program

The Secure File Transfer Program is written by the BDM Corporation. It provides a means
of transferring sensitive information from one computer system to another. This system
implements Transmission Control Protocol (TCP) and conforms to RFC:793. TCP provides
reliable communication between pairs of processes in logically distinct hosts on networks and
sets of interconnected networks. The TCP resides in the transport layer of the DOD Internet
Model. It encapsulates messages received from the utility layer protocols which reside directly
above, and passes the packet to, the Internet layer (communicates with the Internet Protocol(IP)).
The TCP supports the following functions: connection-oriented, reliable data transfer, ordered
data transfer delivery, full-duplex and flow control.

TCP communicates with both upper-layer and lower-layer protocols by means of response
and request primitives. A multiplexing mechanism is built into TCP to support multiple
upper-layer Protocol (ULP) processes by a single TCP process. Messages passed into TCP from
ULPs are buffered and sent when the appropriate size is adequate for efficient transfer or internal
processing warrants communication. All communication between entities is synchronized and
flow control maintained by TCP.

System-level documentation may be found in the "tcp.man" and the "sftpuser.man" files
located in the [.BDM] directory. The code is written for the VAX/VMS and the Telesoft WICAT
environments. The specification source code contains some light documentation.

9.3 Ada Runtime Support for Complex Time-Critical Embedded Applications

This runtime support system is written by Advanced System Technologies. It is an intertask
communication and shared resource control system. The Ada runtime services provided by the
system are intended to satisfy a majority of the requirements for high-level control and
synchronization functionality. The services required fall into the following six categories:
buffered intertask communication, shared data access management, timed data buffer, periodic
tasks, task scheduling, and task pool management.

System-level documentation may be found in the "usermanual.txt" file located in the
[.ADSYSTECH2] directory. The source code is well written, well documented, and follows a
uniform coding style. The system has been developed for the VAX/VMS and the PC/AT
environments. It exhibits potential for reuse in simulation and realtime applications.

9.4 Synthesis of Large Systems with a Versatile Server Package

The Versatile Server Package is written by Computer Technology Associates. This package

12

CDRL 0580
17 March 1989

enables a designer to specify a new software system as a composition of several subsystems. In
addition, the designer can express, in Ada, the data dictionary associated with the data flows that
connect the subsystem. The software described here can take this Ada-based description and use
it to generate Ada code that implements the interface tasks required by the subsystems.
Alternative code generators are provided so that the interface can be internal to a single hardware
host or external between two or more hosts.

System-level documentation may be found in the "uguide.lst", "pguide.lst", and
"dguide.lst" files located in the I.CTA4_0433] directory. These manuals provide a description of
the system as well as specific help for application programmers. A thorough demonstration
program is included with the system. The source code is very well documented and follows a
well defined, uniform programming format. The code has been developed for the PC/AT
environment using the Alsys Ada compiler.

9.5 Ada Remote Procedure Call

The Ada Remote Procedure Call (RPC) system is written by Software Architecture and
Engineering. The RPC tool kit is a collection of facilities defining a layered hierarchy of
communication protocols that enable an Ada programmer to construct a distributed
implementation of an Ada application (subsystem) using the remote procedure call paradigm.
The tool kit is implemented as a collection of Ada packages, generic packages, and a generic
subprogram.

The Ada RPC tool kit is organized into four subsystems of communication protocol
abstractions. Each subsystem is represented by a collection of Ada packages that contain the
associated type definitions and subprograms to provide the required capability. These subsystems
are: presentation protocol, session protocol, representation protocol, and transport protocol.

The presentation, session, and transport protocol subsystems are organized into a linear
hierarchy that closely follows the ISO OSI model of a layered intemetwork communication
protocol. The representation protocol subsystem is utilized in the implementation of the
presentation and session protocol subsystems and is also used witin user-written code for a
particular application (subsystem) to construct instantiation parameters for the facilities in the
presentation protocol subsystem.

System-level documentation may found in "rpc-phl.man" and "rpc-phl.readme" files
located in the [.SA_EJ directory. The source code is well documented and adheres to a uniform
programming .ormat. It has been designed to operate in the PC/AT and the SUN-3 (UNIX)
environments. Some C source code is provided to gain access to a few of the UNIX C network
library functions that cannot be bound directly to Ada.

13

CDRL 0580
17 March 1989

10. PLANNING AND OPTIMIZATION

This section contains all of the planning and optimizing tools. Among the systems there is
an Ada implementation of several Dijkstra algorithms, and a set of simulation tools (TASKIT).
Also included in this section are a set of resource requirements pairing algorithms and a set of
reusable allocation optimizing algorithms (Reusable Ada Modules for Resource Allocation).

10.1 Optimization and Planning Tools

This system is a collection of Dijkstra's algorithms and is written by Systems Control
Technology. The algorithms include Dijkstra's shortest path between nodes, dynamic
programming algorithm, terrain masking package, and route retrieval package.

Each of the algorithm implementations contains a demonstration program and a users
manual. Specifically, this documentation may be found in "dijkstra-users.man",
"dpa~users.man", "masking-users.man", and "routeretrievalusers.man" files. The files are
located in separate subdirectories under the I.SCT_OP2] directory. The code is well documented
and follows a uniform coding format.

10.2 Planning and Optimization Algorithms

This set of optimization algorithms is written by Lockheed. The algorithms implemented
include an optimization of resource to requirements pairing and an Ada implementation of
resource allocation modules. The resource allocation modules are taken from the existing
Lockheed system Reusable Ada Modules for Resource Allocation (RAMORA).

The heart of RAMORA consists of three major reusable software elements inherent in most
resource allocation systems; Effectiveness, Criteria and Optimization. The Effectiveness package
computes the effectiveness values for each resource/requirement pair. RAMORA's effectiveness
estimates come from tables of data based on targets and weapons. These tables are taken from a
DOD document called the Joint Munitions Effectiveness Manual (JMEM). JMEM data is used to
compute the number of required weapons to inflict a desired level of damage on a specified
target. The Criteria package computes criteria values based on output from the Effectiveness
package and some system-dependent weighting factors. These criteria values are then used by
the Optimization package to optimally pair the entered targets with selected weapons.

System-level documentation may be found in the [.ABSTRACTS] directory in the file
"martin.txt". The source code may be found in the [.LOCKHEEDPOA2 directory.

10.3 Tasking Ada Simulation Kit

The Tasking Ada Simulation Kit (TASKIT) is written by the Data Systems Division of
General Dynamics. It consists of a set of tools that enables the use of Ada as the development
language for simulations. The system provides the programmer with services common to many
types of modeling applications. These functions include an activity manager. keyed linked list
manager, math functions package, random number services utility, and resource protection.

The tools are implemented as user-callable procedures and functions and are organized into
Ada packages. These packages can he used individually or in ajny combination to develop
models and may even be used for non-simulation applications. TASKIT uses an activity-oriented
modeling approach which is similar to discrete event modeling. This activity-oriented world
view was chosen so that simulations constructed using TASKIT can take advantage of parallel

14

CDRL 0580
17 March 1989

processing. The activity orientation can also be used to construct network type simulations.

In addition to the tools for developing simulation models, TASKIT provides a system
called SDMS (Simulation Data Management System) which manages input and output data for
simulations. It enables the user to enter simulation data in user-defined tables using a spreadsheet
format and provides a library of procedures that enable application programs to read and write
data to the tables. SDMS is described in Volume 11 of the user's manual. It is treated separately
since it is a stand-alone system and is completely independent of the other TASKIT components.

System-level documentation may be found in the "usermanualvolI.doc" and"usermanualvol_II.doc" files located in the [.GENDYNAM4] directory. The system was
developed using the VAX, Alsys. Verdix Harris, and Telesoft/GD Ada compilers. The code is
well documented and follows a uniform coding format.

15

CDRL 0580
17 March 1989

11. DESIGN, INTEGRATION, AND TEST

This section contains all of the software for designing and testing. Among the systems there
is a test generating tool, an embedded systems debugger, and a configuration management
assistant.

11.1 Ada Test Support Tool

The Ada Test Support Tool (TST) system is written by Intermetrics. The TST is written in
Ada to provide for the testing and analysis of Ada programs. TST provides the user with a
compiler-independent and portable tool for testing individual routines or subprograms having
visibility within a compilable Ada unit.

TST prompts the user for the input to the program units being tested, checks the validity of
the parameters, executes the program using the test values specified by the user, and collects the
results of the test. TST then provides a summary of the test execution which shows the
subprogram tested, input values, output values, and function results. An optional path analysis
report can be included which shows the paths executed and how often each statement in the
program was executed.

TST consists of a source instrumenter, a runtime Monitor, a report generator, and an
on-line help facility. These are combined into a TST shell providing an integrated environment
from which the four components of TST can be executed. Additionally, TST provides an
interface to the system level, which enables the user to execute operating system commands from
within the shell.

System-level documentation may be found in the "tst.ug" and "read.me" files located in the
.IINTER_TSTI directory. The TST has been developed using the Alsys and VAX Ada

compilers. The code is well documented and follows a uniform coding style. There is an on-line
help facility that provides the user with information on syntax and the TST capabilities.

11 2 Ada Embedded Systems Debugger

The Ada Embedded Systems Debugger (ESD) is written by Intermetrics. ESD is a
symbolic debugger for computer programs implemented in the Ada programming language. Its
purpose is to enable the user to locate errors in program logic by providing a "window" into the
program's execution through which the user can monitor and, to a certain extent, alter the status
and flow of control of the Ada program being tested.

All interfaces between the user's program and ESD are accomplished through source
instrumentation. As a result, a portion of ESD actually becomes a part of the user's program
when it is executed. Thus, it is subject to the same restrictions, limitations, and constraints as the
user's program. For example, constants may be examined but they may not be modified. On the
other hand, OUT mode parameters in subprograms may be modified, but they may not be
examined.

System-level documentation may be found in the "userguid.esd" file located in the
[.INTER_ESDI directory. The code is well documented and follows a uniform coding format.
ESD has been designed using the Alsys. VAX, and Meridian Ada compilers.

11.3 Configuration Management Assistant for Ada Environments

16

CDRL 0580
17 March 1989

The Configuration Management Assistant (CMA) is written by Tartan Laboratories. As
stated in the SOW, the CMA will administer versions of system components and tools. It allows
users to describe configuration families and specific sets of versions. Completeness and
consistency checks may be performed on the configuration elements. CMA integrates nested
configurations. This allows the tailoring of the configuration of a component to fit the specific
needs of that component. At the time of this delivery, no source code or documentation has been
provided.

11.4 Table Building Generator

The Table Building Generator (TBG) is written by Tartan Laboratories. According to the
SOW, the TBG is intended to facilitate preparation of initialized tables of data as part of an
application. The tool takes as input a high-level data description along with an ASCII
representation of the data. It perfoms various optimizations, in storing the tabular data, while
providing rapid and efficient access. At the time of this delivery, no source code or
documentation has been provided.

11.5 Parser Builder

The Parser Builder system is written by Westinghouse Electric. This system takes as input
BNF grammar for an application programming language and outputs a file containing the tables
needed by the parser. Some useful packages include a lexical scanner, date and time utility
package, sorting package, hash table package, and list package.

System-level documentation is not provided, but there is an installation message in the
"read.me" file located in the [.WESTINGPARSER] directory. The source code has been
developed for the VAX/VMS and Rational environments.

17

CDRL 0580
17 March 1989

12. REUSABILITY ASSISTANCE

This section contains software for increasing reusability. Among the systems, there is a
composer for generating PDL and an expert system modeled after a Unisys-based knowledge
representation system.

12.1 Reusability Library Framework

The Reusability Library Framework is written by Unisys. It implements three framework
subsystems AdaKNET, AdaTAU, and Gadfly. The Gadfly subsystem has not been delivered.
The subsystems are Abstract Data Type implementations of Unisys based knowledge
representation systems. AdaKNET is a structured inheritance representation system and
AdaTAU is a rule-based inferencer.

AdaKNET is based partly on KL-ONE, and partly on K-NET, Unisys-proprietary
structured inheritance system. Use of the AdaKNET ADT requires a thorough understanding of
the sometimes complex semantics of structured inheritance networks. AdaKNET is implemented
as layered abstract data types (ADTs). Users of AdaKNET need only "with" a single package
(package AdaKNETs). AdaKNET provides a programmatic interface to a semantic network
model; operations are provided for creating, saving, restoring, manipulating, and examining the
structure of AdaKNET instances.

AdaTAU is based on TAU (Think, Ask, Update), a Unisys-proprietary production
rule-based system that incorporates an agenda mechanism for directing interaction with a user
along with a forward-chaining inference system. Rule base systems provide deductive capability
to generate new information based on information already present in the system. Information is
s' red in the form of facts that are represented in AdaTAU as attribute, value pairs. Rule bases
are simply collections of rules, each of which includes a list of facts that must be true to apply
the rule, and a list of facts to be concluded when the rule is applied.

System-level documentation for the AdaKNET subsystem may be found in the
"usermanual." file in the [.UNISYS RLF2.ADAKNET] directory. Documentation for the
AdaTAU subsystem may be found in the "usermanual." file located in the
t.UNISYSRLF2.ADATAU] directory. The subsystems were developed using the Verdix Ada
Development System 5.5 on a Sun-3 network.

12.2 Ada Composer

The Ada Composer is written by Intermetrics. The Composer is a graphical design tool that
supports the interactive creation of object oriented design diagrams (OODDs) and translates
them into compilable Ada program design language (PDL). The Ada Composer supports the
reuse of existing software components by using a source to graph converter (STGC) that
translates existing Ada reusable components into graphical representations that may be included
in OODDs. Reusable component source code may be automatically inserted into the PDL at the
user's request. The Ada Composer builds on the graphic Ada designer (GAD) developed by the
SYSCON Corporation for the WIS Ada toolset.

The Composer has an interactive and graphical user interface that provides an easy way to
compose existing reusable software components with newly created components to design
software systems. The generated PDL serves as a compilable top-level design document that may
be further refined into a detailed design and then into the final source code. By including
reusable component source, the PDL is closer to the final product, thus decreasing software

18

CDRL 0580
17 March 1989

development time.

System-level documentation may be found in the "users.txt" file located in the
[.INTER_COMP] directory. The Composer was developed using tie Alsys and VAX Ada
compilers. The source code is well documented.

12.3 Rapid Storage and Retrieval of Reusable Components (RSR)

The RSR system is written by AETech. To date no source code or documentation has been
provided.

19

CDRL 0580
17 March 1989

13. OTHER TOOLS

This is the last section and it contains a collection of systems that do not necessarily fit into
the previously mentioned categories. Among them there is a set of packages for developing
image processing applications, and a set of pattern recognition packages.

13.1 Factory/Maintenance Fault Isolation

The Factory/Maintenance Fault Isolation system is written by ITT Avionics. The system
contains packages for reading, reducing, and printing recorded data (taped). It contains very little
system level documentation. The documentation files are in an unknown format which is not
supported on the repository computer and are therefore unreadable.

13.2 Instrumented System Development Software Components

The Instrumented Systems Development is written by AETech. At the time of this delivery
no source code or documentation has been provided.

13.3 Reusable Image Processing Packages

The Reusable Image Processing Packages are written by Ford Aerospace Corporation. The
Reusable Image Processing Packages contract focuses on the preprocessing category. These
algorithms are the foundations for more sophisticated image processing algorithms. The
packages include histogram operations, point operations, neighborhood operations, and
morphological operations.

The image processing packages are intended as building blocks for different imaging
applications. They can be used to build more complex image processing functions by combining
several of the lower level functions.

System-level documentation may be found in the "finalreport.lis" and "usersguide.is" files
located in the [.FORD4] directory. The source code was developed using the Telesoft VAX and
the Alsys PC/AT Ada compilers.

13.4 Pattern Recognition

The Pattern recognition packages are written by Westinghouse Electric. The purpose of the
pattern recognition system is to classify bit strings using an algorithm proposed by John Holland
of the University of Michigan. The system is a learning classification program that can be
applied to user-defined domain environments with little or no code modification of the core
routines. Bit strings to be classified are called environmental messages. A set of pattern bit
strings are used as the rules in the system. The strength or importance of these rules can change
to meet the particular domain environment. Interim messages may be generated before the
system produces some result.

The pattern recognition system is not intended as a stand alone system. The system is
intended to serve as a reusable classification engine to be inserted into a larger application. An
example application is provided to show the operation of the pattern recognition system. The
application contains routines to perform the initialization required for the particular domain
environment and routines to perform post processing once the pattern recognition system has
halted. This example may be used to reduce the amount of application specific code that must be
designed from the start. These routines have more application dependencies than the Pattern

20

CDRL 0580
17 March 1989

Recognition System and are not included in the reusable portion since they affect the reusability
of the Pattern Recognition System. But they can be reused within the given application domain.

System-level documentation may be found in the "usersmanual.lis" and "read.me" files
located in the [.WESITNGPR2_2J directory. The system was developed for the VAX/VMS and
Rational 1000 environments. The code is lightly documented.

21

CDRL 0580
17 March 1989

14. OVERVEW OF FOUNDATION TOOLS

14.1 Notable Systems

Several of the foundation tools stand out, and should be noted for their more than adequate
documentation, coding format, and insightful use of Ada. When a tool is singled out as notable
we are not implying that the software is without flaws or that the tool is easily portable (although
this may be the case). By notable we are saying the tool stands out from the rest of the
foundation systems in this report. The time allotted for this report did not provide for a thorough
investigation of all the components for every tool. All of the observations are made by examining
the Statement of Work (SOW) for a particular tool, reading system level documentation (where
available), and scanning several source code files.

14.1.1 Documentation and Style

The Ada Command Environment (ACE) written by Unisys is the first example. The ACE
system gives the user an interactive, object oriented, command language environment for Ada
development. It provides an excellent range of system level manuals. There is a user manual, a
manual listing the existing bugs and several manuals which aid in the porting of the software
from a PC, to UNIX, or to a Verdix environment. The source code is well documented and
follows a single uniform coding format. By following a single format and style the code is much
easier to comprehend and maintain.

The Versatile Server Package w ,i; by Computer Technology Associates is another
excellent example. This system allows a designer to specify a new software system as a
composition of several subsystems. This is an excellent method to follow when engineering large
systems. The Versatile Server Package providt, , itiscr ianual, a programmer's manual, and a
demonstration manual. The source code is very well documented and follows a single uniform
-oding format. The code has been developed on the PC/AT environment using the Alsys Ada
compiler.

Finally, The Tasking Ada Simulation Kit (TASKIT), written by General Dynamics, gives
the user a set of tools for writing simulations in Ada. This system provides two user's manuals
and has been developed on foor Ada compilers. A Simulation Data Management System
(SDMS) is available and is described in volume two of the user manual. The source code is well
documented and follows a single uniform coding format.

14.1.2 Candidates for Reuse

The X-Window system written in Ada by SAIC/San Diego is an application of today's
most popular windowing technology. The X-Window system originated at MIT as a means of
creating a network transparent windowing system. It consists of a set of common routines that
manage the terminal and the keyboard. The specifications remain unchanged and the underlying
code is written for specific target hardware. The first approach uses the C programming language
but the X-Window technology is excellently suited for Ada. The Ada system written by
SAIC/San Diego has been developed using three compilers. It is intended to be portable.

The set of Optimization and Planning Tools written by Systems Control Technology is a
set of Dijkstra algorithms written in Ada. Each of the algorithms contains a demonstration
program and a user manual. The algorithms may be an addition to any set of reusable
components or could be the basis for one.

22

CDRL 0580
17 March 1989

The Embedded Systems Debugger (ESD) written by Intermetrics is a symbolic debugger
for programs written in Ada. The notable aspect of this system is that it interfaces with the user's
program and actually becomes part of the program. The user can monitor and, to a certain extent,
alter the status of the program.

All of the above systems exhibit notable features that help them stand out from the others.
This is by no means a comprehensive overview of the foundation tools but rather an introduction
into the what is available in the STARS repository under the [.STARSFOUNDATION]
directory. Several of the systems contain very little documentation and this hinders their
representation here. Some are incompatible with the VAX/VMS environment and this prevents a
fair evaluation of the system. In addition some of the systems are conversions of existing tools.
This conversion is not always an improvement and advances the point that a reusable and well
engineered software system should be designed with reuse in mind from the start.

23

CDRL 0580
17 March 1989

APPENDIX 15.1

FOUNDATION TOOLS DIRECTORY STRUCTURE

This section gives a graphical representation of the directory structure of the
STARSFOUNDATION directory on the STARS repository. All of the top-level directories
(below the [.STARSFOUNDATION] directory) pertain to a specific foundation contract. The
contents of the directories are discussed in greater detail in the previous sections above.

Subdirectories below level ADA$:[REPOSITORY]

.STARS FOUNDATION
.ABSTRACTS

.ADSYSTECH2

.AETECHCAI

.AETECHVI

.AREA

.BDM
CSC

CTA3_0432
CTA4_0433

.REPORT

.SLIDES

.SOURCE

ESL

ASP

.68K

.$5NIMPORTS

.$5NLINES

.$5NNETS

.$5NOBJECTS
PLAYERS

.68KBIN
.$5NIMPORTS
.$5NLINES

.$5NNETS

.$5NOBJECTS

SUN
IPC

.68K
.SAVE

DEBUG

.$5NIMPORTS

.$5NLINES

.$5NNETS

.$5NOBJECTS

GENERIC

HARDWARE
INTERFACE

.$5NIMPORTS

.$5NLINES

.$5NNETS

24

CDRL 0580
17 March 1989

.$5NOBJECTS

SPECIFIC

SUNDEBUG

.$5NIMPORTS

.$5NLINES

.$5NNETS

.$5NOBJECTS

SUNHARDWARE

SUNINTERFACE

.$5NIMPORTS

.$5NLINES

.$5NNETS

.$5NOBJECTS

FORD4

.GENDYNAM4

.GRUMMAN

INTEGSOFT

INTERCICSQL2

INTER COMP

INTER ESD

INTER TST

ITTAVION

UATL

COMMON

.COMMON LIB

.PC

.VAX

DISPLAY

CMS

DISPLAYLIB

PC

PRETTY

.ACS

SCA

TEMP

.VAX

GIGA TRONICS

.GIGALIB

.1155310
.1553_LIB

PC

VAX

148810
.488 LIB

.PC

VAX

INTERNAL IO

.INT LIB

RECORDING

.RECORD LIB

REDUCTION

.PC

25

CDRL 0580
17 March 1989

REDUCE LIB

REDUCESCALIB

.VAX

STIMRESPONSE

.STIMRESPLIB

.TEMP
UATL

.COMMON

.COMMON LIB

.PC

.VAX

DISPLAY

.DISPLAY LIB

.PC

.VAX

1155310
.1553 LIB

.PC

.VAX

148810
.488_LIB
.PC

.VAX

INTERNALIO

.INT LIB

RECORDING

.RECORDLIB

REDUCTION

.PC

.REDUCELIB

.VAX

STIMRESPONSE

.STIM RESP LIB

USER

.USER LIB

USER

.USER LIB

ITTAVIO2

UATL
UATL

.BUILDER

COMMON

.COMMON LIB

.PC

.VAX

DISPLAY

PC

.VAX

DOCUMENTATION

DRIVER

.GIGA_1018

.HP COUNTER

26

CDRL 0580
17 March 1989

•HP D TO A

.HP MULTIMETER

.HP POWERMETER

11553 10

.PC

.VAX

1488_10

.PC

.VAX

INTERNAL 10
PC

VAX

RECORDING

.PC

.VAX

REDUCTION

.PC

VAX

STIMRESPONSE

.PC

VAX

TRAJECTORY

USER

USER LIB

LOCKHEED POA2

SAIC3

SAICBB3

SAICCOMSYS

.SOURCE

.USERMAN

SAICSGML

SAIC TP2

SA E

SCTOP2

DIJKSTRA

.ALGORITHM

.DEMONSTRATION

DPA

.ALGORITHM

.DEMONSTRATION
MASKING

.ALGORITHM

.DEMONSTRATION

RET

.ALGORITHM

.DEMONSTRATION

SOFTECH2

.ADALIB

SRI

.ADALIB

UNISYSACE3

.DESIGN

27

CDRL 0580
17 March 1989

* DOCS

* .MISC
* * READMES

* SRC

* UNISYSRLF2

* ADAKNET

* ADATAU

* * COM1ON

* * *GADFLY

* RBDL

* SNDL

* WESTINGPR-')2

* * VAXADALIB

* * WESTINGNP

* * ADALIB

.WESTING-PARSE

28

